3.715 \(\int \frac {\cos ^{\frac {3}{2}}(c+d x) (A+C \cos ^2(c+d x))}{(a+b \cos (c+d x))^2} \, dx\)

Optimal. Leaf size=292 \[ -\frac {\left (a^2 C+A b^2\right ) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac {\left (5 a^2 C+3 A b^2-2 b^2 C\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b^2 d \left (a^2-b^2\right )}-\frac {a \left (5 a^2 C+A b^2-4 b^2 C\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^3 d \left (a^2-b^2\right )}+\frac {\left (15 a^4 C+a^2 b^2 (3 A-16 C)-2 b^4 (3 A+C)\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 b^4 d \left (a^2-b^2\right )}+\frac {a \left (-5 a^4 C-a^2 b^2 (A-7 C)+3 A b^4\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{b^4 d (a-b) (a+b)^2} \]

[Out]

-a*(A*b^2+5*C*a^2-4*C*b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2
))/b^3/(a^2-b^2)/d+1/3*(a^2*b^2*(3*A-16*C)+15*a^4*C-2*b^4*(3*A+C))*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/
2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/b^4/(a^2-b^2)/d+a*(3*A*b^4-a^2*b^2*(A-7*C)-5*a^4*C)*(cos(1/2*d*x+1/
2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))/(a-b)/b^4/(a+b)^2/d-(A*b^2+C
*a^2)*cos(d*x+c)^(3/2)*sin(d*x+c)/b/(a^2-b^2)/d/(a+b*cos(d*x+c))+1/3*(3*A*b^2+5*C*a^2-2*C*b^2)*sin(d*x+c)*cos(
d*x+c)^(1/2)/b^2/(a^2-b^2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.97, antiderivative size = 292, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3048, 3049, 3059, 2639, 3002, 2641, 2805} \[ \frac {\left (a^2 b^2 (3 A-16 C)+15 a^4 C-2 b^4 (3 A+C)\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 b^4 d \left (a^2-b^2\right )}-\frac {a \left (5 a^2 C+A b^2-4 b^2 C\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^3 d \left (a^2-b^2\right )}+\frac {a \left (-a^2 b^2 (A-7 C)-5 a^4 C+3 A b^4\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{b^4 d (a-b) (a+b)^2}-\frac {\left (a^2 C+A b^2\right ) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{b d \left (a^2-b^2\right ) (a+b \cos (c+d x))}+\frac {\left (5 a^2 C+3 A b^2-2 b^2 C\right ) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 b^2 d \left (a^2-b^2\right )} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^(3/2)*(A + C*Cos[c + d*x]^2))/(a + b*Cos[c + d*x])^2,x]

[Out]

-((a*(A*b^2 + 5*a^2*C - 4*b^2*C)*EllipticE[(c + d*x)/2, 2])/(b^3*(a^2 - b^2)*d)) + ((a^2*b^2*(3*A - 16*C) + 15
*a^4*C - 2*b^4*(3*A + C))*EllipticF[(c + d*x)/2, 2])/(3*b^4*(a^2 - b^2)*d) + (a*(3*A*b^4 - a^2*b^2*(A - 7*C) -
 5*a^4*C)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/((a - b)*b^4*(a + b)^2*d) + ((3*A*b^2 + 5*a^2*C - 2*b^2*C
)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*b^2*(a^2 - b^2)*d) - ((A*b^2 + a^2*C)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(
b*(a^2 - b^2)*d*(a + b*Cos[c + d*x]))

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 3048

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[((c^2*C + A*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*(c + d*Sin[
e + f*x])^(n + 1))/(d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m
 - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + c*C*(b*c*m + a*d*(n + 1)) - (A*d*(a*d*(n +
 2) - b*c*(n + 1)) - C*(b*c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] - b*(A*d^2*(m + n + 2) + C*(c^2*(
m + 1) + d^2*(n + 1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] &
& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]

Rule 3049

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e +
 f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(m + n + 2)), x] + Dist[1/(d*(m + n + 2)), Int[(a + b*Sin[e + f*x]
)^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n + 2)
 - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + n + 2))*Sin[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2
, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rubi steps

\begin {align*} \int \frac {\cos ^{\frac {3}{2}}(c+d x) \left (A+C \cos ^2(c+d x)\right )}{(a+b \cos (c+d x))^2} \, dx &=-\frac {\left (A b^2+a^2 C\right ) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac {\int \frac {\sqrt {\cos (c+d x)} \left (\frac {3}{2} \left (A b^2+a^2 C\right )-a b (A+C) \cos (c+d x)-\frac {1}{2} \left (3 A b^2+5 a^2 C-2 b^2 C\right ) \cos ^2(c+d x)\right )}{a+b \cos (c+d x)} \, dx}{b \left (a^2-b^2\right )}\\ &=\frac {\left (3 A b^2+5 a^2 C-2 b^2 C\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 b^2 \left (a^2-b^2\right ) d}-\frac {\left (A b^2+a^2 C\right ) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}-\frac {2 \int \frac {-\frac {1}{4} a \left (3 A b^2+5 a^2 C-2 b^2 C\right )+\frac {1}{2} b \left (3 A b^2+\left (2 a^2+b^2\right ) C\right ) \cos (c+d x)+\frac {3}{4} a \left (A b^2+5 a^2 C-4 b^2 C\right ) \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{3 b^2 \left (a^2-b^2\right )}\\ &=\frac {\left (3 A b^2+5 a^2 C-2 b^2 C\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 b^2 \left (a^2-b^2\right ) d}-\frac {\left (A b^2+a^2 C\right ) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac {2 \int \frac {\frac {1}{4} a b \left (3 A b^2+5 a^2 C-2 b^2 C\right )+\frac {1}{4} \left (a^2 b^2 (3 A-16 C)+15 a^4 C-2 b^4 (3 A+C)\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{3 b^3 \left (a^2-b^2\right )}-\frac {\left (a \left (A b^2+5 a^2 C-4 b^2 C\right )\right ) \int \sqrt {\cos (c+d x)} \, dx}{2 b^3 \left (a^2-b^2\right )}\\ &=-\frac {a \left (A b^2+5 a^2 C-4 b^2 C\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^3 \left (a^2-b^2\right ) d}+\frac {\left (3 A b^2+5 a^2 C-2 b^2 C\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 b^2 \left (a^2-b^2\right ) d}-\frac {\left (A b^2+a^2 C\right ) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}+\frac {\left (a \left (3 A b^4-a^2 b^2 (A-7 C)-5 a^4 C\right )\right ) \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx}{2 b^4 \left (a^2-b^2\right )}+\frac {\left (a^2 b^2 (3 A-16 C)+15 a^4 C-2 b^4 (3 A+C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx}{6 b^4 \left (a^2-b^2\right )}\\ &=-\frac {a \left (A b^2+5 a^2 C-4 b^2 C\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{b^3 \left (a^2-b^2\right ) d}+\frac {\left (a^2 b^2 (3 A-16 C)+15 a^4 C-2 b^4 (3 A+C)\right ) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{3 b^4 \left (a^2-b^2\right ) d}+\frac {a \left (3 A b^4-a^2 b^2 (A-7 C)-5 a^4 C\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{(a-b) b^4 (a+b)^2 d}+\frac {\left (3 A b^2+5 a^2 C-2 b^2 C\right ) \sqrt {\cos (c+d x)} \sin (c+d x)}{3 b^2 \left (a^2-b^2\right ) d}-\frac {\left (A b^2+a^2 C\right ) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{b \left (a^2-b^2\right ) d (a+b \cos (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.79, size = 301, normalized size = 1.03 \[ \frac {4 \sin (c+d x) \sqrt {\cos (c+d x)} \left (\frac {3 a \left (a^2 C+A b^2\right )}{\left (a^2-b^2\right ) (a+b \cos (c+d x))}+2 C\right )-\frac {\frac {2 a \left (5 a^2 C-3 A b^2-8 b^2 C\right ) \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )}{a+b}+\frac {8 \left (C \left (2 a^2+b^2\right )+3 A b^2\right ) \left ((a+b) F\left (\left .\frac {1}{2} (c+d x)\right |2\right )-a \Pi \left (\frac {2 b}{a+b};\left .\frac {1}{2} (c+d x)\right |2\right )\right )}{a+b}+\frac {6 \left (5 a^2 C+A b^2-4 b^2 C\right ) \sin (c+d x) \left (\left (b^2-2 a^2\right ) \Pi \left (-\frac {b}{a};\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) F\left (\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )-2 a b E\left (\left .\sin ^{-1}\left (\sqrt {\cos (c+d x)}\right )\right |-1\right )\right )}{b^2 \sqrt {\sin ^2(c+d x)}}}{(a-b) (a+b)}}{12 b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^(3/2)*(A + C*Cos[c + d*x]^2))/(a + b*Cos[c + d*x])^2,x]

[Out]

(4*Sqrt[Cos[c + d*x]]*(2*C + (3*a*(A*b^2 + a^2*C))/((a^2 - b^2)*(a + b*Cos[c + d*x])))*Sin[c + d*x] - ((2*a*(-
3*A*b^2 + 5*a^2*C - 8*b^2*C)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + (8*(3*A*b^2 + (2*a^2 + b^2)*
C)*((a + b)*EllipticF[(c + d*x)/2, 2] - a*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2]))/(a + b) + (6*(A*b^2 + 5*
a^2*C - 4*b^2*C)*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c +
 d*x]]], -1] + (-2*a^2 + b^2)*EllipticPi[-(b/a), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(b^2*Sqrt[Sin[
c + d*x]^2]))/((a - b)*(a + b)))/(12*b^2*d)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + A)*cos(d*x + c)^(3/2)/(b*cos(d*x + c) + a)^2, x)

________________________________________________________________________________________

maple [B]  time = 7.40, size = 1102, normalized size = 3.77 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^2,x)

[Out]

-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(4/3/b^2*C*(2*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2*
c)+2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*(si
n(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-sin(1/2*d*x+1
/2*c)^2*cos(1/2*d*x+1/2*c))/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)-4*C/b^3*(a+b)*(sin(1/2*d*x+1/
2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(Elliptic
F(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))+2*(A*b^2+3*C*a^2+2*C*a*b+C*b^2)/b^4*(sin(
1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)
*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+2*a^2*(A*b^2+C*a^2)/b^4*(-b^2/a/(a^2-b^2)*cos(1/2*d*x+1/2*c)*(-2*sin(1/
2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(2*cos(1/2*d*x+1/2*c)^2*b+a-b)-1/2/(a+b)/a*(sin(1/2*d*x+1/2*c)^2)^(
1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*
d*x+1/2*c),2^(1/2))-1/2*b/a/(a^2-b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1
/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+1/2*b/a/(a^2-b^2)*(sin(1/2*d
*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Elli
pticE(cos(1/2*d*x+1/2*c),2^(1/2))-3*a/(a^2-b^2)/(-2*a*b+2*b^2)*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+
1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b
),2^(1/2))+1/a/(a^2-b^2)/(-2*a*b+2*b^2)*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2
*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2)))+8*a/b^3*(
A*b^2+2*C*a^2)/(-2*a*b+2*b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1
/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),-2*b/(a-b),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*c
os(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \cos \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+C*cos(d*x+c)^2)/(a+b*cos(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + A)*cos(d*x + c)^(3/2)/(b*cos(d*x + c) + a)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\cos \left (c+d\,x\right )}^{3/2}\,\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(c + d*x)^(3/2)*(A + C*cos(c + d*x)^2))/(a + b*cos(c + d*x))^2,x)

[Out]

int((cos(c + d*x)^(3/2)*(A + C*cos(c + d*x)^2))/(a + b*cos(c + d*x))^2, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)*(A+C*cos(d*x+c)**2)/(a+b*cos(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________